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A GRAPH WITH E EDGES HAS PAGENUMBER 0(/E log E)

Seth M. Malitz

Abstract

A book embedding of a graph consists of a linear ordering of the vertices along the spine of a book and an
embedding of its edges on the pages so that no two edges on a given page int rsect. The minimum number of
pages in which a graph can be embedded is its pagenumber. I ,,a3 -,- .r -e- he f..... rzae .

1. An 0 (,/E log E) upper bound on the pagenumber of an arbitrary graph with E edges and any
number n of nodes. In the case E > 4n, this is a dramatic improvement over the 0(E) bound given in
[HI]. Furthermore, this result is nearly tight since a clique with E edges has pagenumber n (FE).

2. With high probability, a random graph with roughly E edges has pagenumber 0 (,E).

3. An 0(Id log d n 12) upper bound on the pagenumber of any d-regular graph. For large d, this
is a marked improvement over the 0 (dn 1 /2) upper bound given in [CLRI.

4. For every d > 2 and all large n, there are n-vertex d-regular graphs with pagenumber
n(fdn " / 2 1 /d). This significantly improves the D(nli" 1/logan) lower bound given in [CLR].
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A Graph with E Edges has Pagenumber O( fE Fog E)

Seth M. Malitz
Applied Math Department

M.I.T.

November 2, 1987

Abstract

A book embedding of a graph consists of a linear ordering of the vertices along the spine of a
book and an embedding of its edges on the pages so that no two edges on a given page intersect.
The minimum number of pages in which a graph can be embedded is its pagenumber. In this
paper, we present the following results:

1. An O(VPTo K)upper bound on the pagenumber of an arbitrary graph with E edges and
any number n of nodes. In the case E > 4n, this is a dramatic improvement over tile O(E)
bound given in (ill] . Furthermore, this result is nearly tight since a clique with E edges
has pagenumber f)(,v/E).

2. With high probability, a random graph with roughly E edges has pagenumber O(vfE).
3. An O('dlOgdnI / 2) upper bound on the pagenumber of any d-regular graph. For large d,

this is a marked improvement over the 0(dnf') upper bound given in (CLRJ.
4. For every d > 2 and all large n, there are n-vertex d-regular graphs with pagenumber

[?(vrnl/2- 1 /). This significantly improves the P(nl/2-lld/log n) lower bound given in
[CLR].

1 Introduction
A book embedding of a graph orders the vertices of the graph on the spine of a book and embeds

each edge in a page so that on any page, no two edges cross. The minimum number of pages in
which a graph can be embedded is its pagenumber.

Recent interest in book embeddings has been motivated by fault-tolerant VLSI design ((RJ4CLRJ),
and by complexity theory ((GKS],[Kj,(PPST]). With the Diogenes approach to the design of fault-
tolerant processor arrays [R], we do the following. An array of processors has to be interconnected
to form a desired pattern. The processors are arranged in a "conceptual" line. There are "bun-
dles" of wires running alongside the line. The faulty elements are bypassed and the healthy ones
are interconnected through the bundles. If bundles function as stacks, then the minimum number
of bundles required to realize an interconnection graph Is equal to its pagenumber. Thus a book
embedding with a small number of pages corresponds to reduced hardware. Since the Diogenes
methodology assumes as input an arbitrary Interconnection graph, It is desirable to have good
bounds on pagenumbers for large classes of graph. Unfortunately, even if an ordering of the nodes
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is specified beforehand, the problem of determining an optimal edge embedding for general graphs
is NP-complete [GJMP].

Some other notable results concerning pagenumbers are the following. Bernhart and Kainen
[BKJ proved that graphs with pagenumber 3, could have arbitrarily large genus. In the other
direction, they conjectured that graphs of a fixed genus could require an unbounded number of
pages. In the case of genus 0, i.e. planar graphs, this conjecture was disproved Buss and Shor
[BS] who showed how to embed a planar graph in 9 pages. Later Heath [II) improved that to
7 pages and developed book embedding algorithms for special classes of planar graphs. Finally
Yannakakis [Y], building on the approach in 1I1 , gave an algorithm to embed planar graphs in 4
pages and also constructed a planar graph requiring 4 pages. The general conjecture for arbitrary
fixed genus was recently disproved by Heath and Istrail [111 who provide an algorithm to embed
a genus g graph in 0(g) pages. Finally, Chung, Leighton and Rosenberg [CLRJ establish many
interesting results concerning pagenumbers. They provide optimal book embeddings for a variety
of important networks, supply nontrivial upper and lower bounds on the pagenumbers of d-regular
graphs, relate pagenumber to bisection width, and obtain an algorithm to embed 3-regular graphs
in 0(nl/2 ) pages.

Our paper is motivated by the results in [1111 and [CLR]. Heath and Istrail [III] showed that
a graph G of genus g can be embedded in 0(g) pages and conjectured that in fact 0(V/g) pages
would suffice. If G has n nodes and E edges, and E !< 3n, then g could be much less than E. In
this case, it is a much stronger statement to say G can be embedded in 0(/rg) pages than it is to
say G can be embedded in O(/E-) pages. If, on the other hand, E > 4n, then g = G(E) and thus
to say G can be embedded in O(Vg-) pages is equivalent to saying G can be embedded in O(VIE)
pages. This puts our result of Section 2 In the proper perspective. There we show that any graph
with E edges can be embedded in O( IElogE) pages, and this is nearly tight since the clique with
E edges has pagenumber f(VsE). In Section 3, we show that a random graph with roughly E edges
has pagenumber 0(v/E) with high probability. Section 4 provides an 0(Vr ognl/2) upper bound
on the pagenumber of d-regular graphs which for large d, markedly improves the 0(dn1 / 2) bound
given in (CLR. Finally, in Section 5, we argue that for d > 2 and all sufficiently large n, some
d-regular graph requires fl(Vd'nl/ 2-1/d) pages. This significantly improves the fl(nl/ 2-1//log2 n)
bound of [CLRJ.

2 The O(/o7P) Upper Bound

Let G be a graph with n nodes and E edges, and assume E > n. Why might one guess that G
could be embedded in close to 0(vr/E) pages? There is a two part answer. First, the complete
graph with E edges has pagenumber 0(VE). And second, by picking a random partition of the
nodes Into vT "supernodes" of size n/v/E < vT, one expects a rather uniform distribution of the
edges among supernode pairs. In effect, we can almost simulate the complete graph with E edges,
and thus almost obtain an 0(-/-)-page embedding with any linear order that proceeds supernode
by supernode.

In fact, this simple intuition fails us somewhat, but It does embody our basic approach to the
problem. Various modifications of this idea will take us a long way.

To gain a little more intuition for the problem, we make a few observations.
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Figure 1:

Lemma 2.1 [CLR]. Assume n is even. The complete graph on n vertices, K., has pagenumber
n/2.

Proof. The lower bound on pagenumber is argued as follows. Lay the vertices of K,' out on
a line; call the vertices 1,. .. , n In left-to-right order. Consider the following set of edges ((I, I +
n/2), (2, 2 + n/2),. .. , (n/2, n)), and observe that no pair of edges from this collection can be
placed on the same page without intersecting. Hence this embedding requires n/2 pages. Since all
embeddings of K. are isomorphic, the lower bound on pagenumber follows.

To see the upper bound, consider the following way to lay out K.. Place vertices I,-., n evenly
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Observation. Let G be an arbitrary graph, and suppose it is possible to partition the nodes
of G into t supernodes all of size at most s in such a way that at most c edges span any pair of
supernodes. Then by repeated application of Lemma 2.1, can be embedded in at most (/2) + ct
pages.

To see this, first linearly order the vertices of G in any fashion that proceeds supernode by
supernode. Fix for a moment some supernode U. The edges with both endpoints in U can be

embedded in ./2 pages by Lemma 2.1. Since our linear order proceeds supernode by supernode,
the edges within one supernode can never intersect the edges within another. Consequently, all
edges that have both endpoints In the same supernode can be embedded in n/2 pages.

Now we must focus on the "superedges", the edges that span pairs of supernodes. Assign a
color between 1 and c to each superedge In such a way that no two edges spanning the same pair
of supernodes get the same color. Consider all edges of color i. By using an embedding strategy
analagous to Lemma 2.1, the edges of color i can be embedded in at most 2(1/2) = I pages. The
factor of 2 arises for the following reason. Look at a set of f-colored edges that form what is
analagous to P, In Lemma 2.1. Call this graph Pt. Two edges of P' incident to the same supernode
U may not have the same endpoint in U? and hence the linear order of the vertices may force these
edges to intersect. However, two edges of P that are not incident to the same supernode never



intersect. Thus we can embed Pg' in 2 pages, placing every other edge on one page and the remaining
edges on the second page. If we do this now for all the colors I through c, we obtain an embedding
of all superedges in at most ct pages.

Thus (9/2) + ct pages suffice to embed all the edges. *
A set of edges in a graph G is said to be independent if no pair of edges in the set share an

endpoint. Such a set will also be called a matching. A star is any complete bipartite graph Kl,,.
Lemma 2.2. Let G be an arbitrary graph and suppose the nodes of G can be partitioned into

t supernodes of size at most s in such a way that at most c independent edges span any pair of
supernodes. Then G can be embedded in at most (s/2) + ct pages.

Proof. Look at the bipartite graph B induced by a pair of supernodes. We know, by assump-
tion, that B has no matching of size > c. Recall the well-known fact that I maximum matching I
= I minimum cover I in a bipartite graph, decompose B into a set of at most c edge-disjoint stars
and assign each star a different color between 1 and e. Do this for all pairs of supernodes. Now
consider any linear ordering of the vertices of G that proceeds supernode by supernode. If we view
each star now as being a "superedge", we can use the exact same argument as in the obqervation
to show that G can be embedded in (s/2) - et pages. .

Finally, assume we have an arbitrary graph G with n nodes and E edges, With the aid of the
next two simple lemmas, we can establish that G can be embedded in O( /ElogE) pages.

Randomly assign a color in (1,...,V/ -tE) (p to be defined shortly) to each node of G
uniformly and independently, and group nodes of the same color into supernodes. Let A'j

i,j E I ..... , / ) k > 0 be the event that k independant edges span supernodes i and j.
For k fixed, the indicator random variables for the A') are identically distributed, so superscripts
may be dropped.

Lemma 2.3.

pk!

Proof. Fix a set S of k independent edges in G. The probability that all edges in S have one
endpoint colored i and the other colored j is 2k(I/V/7) 2k = pk/Ek. The total number of such
S is () < Ek/k! . Thus Pr[Ak] < (Ek /k!)(pk/Ek) = pklk and the result follows. a

Lemma 2.4. Let a > I. The probability that any supernode exceeds cardinality an/V/TE- T is

Proof. Standard estimates of the binomial distribution. a

Theorem 2.1. Let G be an arbitrary graph with n nodes and E edges. Then with high
probability, a random linear ordering of the nodes of G is compatible with an O(VElogE)-page
book embedding of G.

Proof. Let p = (b/2e)logE and k = blogE. Then Pr[V{ij},ijA'J ] < E/E b. Let a -
2e and b = 2. By Lemmas 2.3 and 2.4, with high probability no supernode has more than
(2e)n/%/4eE/ logE < V/ e/E15gE nodes, and no pair of supernodes is spanned by more than
2 log E Independent edges. Now apply Lemma 2.2 with t = V = 4eE/log E, a = 4evT15g
and c = 2 log E. With high probability a random node coloring is compatible with an embedding
of G in (s/2) + ct = ( .~e2 + 4vi)VElogE pages. •
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3 An O(v/E) Upper Bound for Random Graphs

We are exceedingly close to a proof that any graph with E edges can be embedded in O(VE/)
pages, and hope to include it in our final paper. What has been a bit of a hindrance is the following
dependency problem. Let P.,...,pj denote arbitrary pairs of supernodes, and let kl,...,kt be a
sequence of integers all > 0. It is not typically the case that the events A' ,..A p' are independent.
If they were independent or if Pr[AP, A ... AA"'< Pr[A' *... PriAP i, then we would have a proof
that any graph with E edges has pagenumber O(V-E).

One way of getting around this dependency problem, is to consider random graphs. In partic-
ular, we can show that with high probability, a random graph on n nodes obtained by throwing
in each edge independently with probability E/n 2, has an O(v'T)-page book embedding.To prove
this, we essentially apply the ideas of Section 2 In an inductive manner, defining a process that first
fixes the order of the vertices and then proceeds to embed the edges of G in phases.

Again G is a random graph on n nodes obtained by throwing in edges independently with
probability E/n 2. Fix a sufficiently large constant d. We will obtain d later.

PHASE 0: Fix a linear ordering of the vertices of G and partition the ordering into vT
consecutive blocks of size n/V/. We will refer to these blocks as "0-supernodes." Decompose the
bipartite graph determined by each pair of 0-supernodes into a minimal number of stars. Call these
stars "base-stars." Remove the edges of d base-stars from between each pair of 0-supernodes. By
Lemma 2.2, these edges can be embedded in dV/E pages.

PHASE i + 1: We have /_E/2' i-supernodes. Pair neighboring i-supernodes to form a set of
v'E/2t+ 1 (i + 1)-supernodes. From between each pair of (i + 1)-supernodes, remove the edges in d
base-stars. By Lemma 2.2, these edges can be embedded in dvfiE/2+l pages.

Let .A' where ij E {i,...,"/g 2 }, ak > 0 be the event that > k base-stars sp~n a-
supernodes i and j after phase a. For k and a fixed, the indicator random variables for the events
.A'- are identically distibuted, so we may drop subscripts.

Lemma 3.1. Pr[oAkI < l/k!.
Proof. Omitted but very easy. e
Hence Pr[There are ij such that OA" holds]< E/k!. Thus with high probability, no pair of

0-supernodes is spanned by a matching of size > log E.
Suppose that with high probability, after A = (1/2)logv/rE phases there are no edges left

spanning any pair of A-supernodes. Each A-supernode contains YE 0-supernodes and there are
4E A-supernodes. By Lemma 2.2 and the above remark, with high probability all edges wholly
within A-supernodes can be embedded in (n/2vE) + (log E) .E = O(vrE) pages. Thus with high
probability, all edges of G can be embedded in

o(VE) + dE/2 + dVE/4 + ... + dvE/2' = O(v /)

pages. So the idea now is to show that PrimA] C I1/_/2 = I/VE. Here is where generating
functions can be quite useful.

Consider the coefficient on the zx term in the series expansion of e-. Lemma 3.1 says this an
upper bound on Pr[oAkJ. Not surprisingly, we can manipulate the series el in phases, so that after
phase a we obtain an upper bound on Pr[.AkJ.

PHASE 0: go(z) -4= I + (e= - terms z° thru xd)/zd.
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PHASE i + 1: g,+,(X) .= 1 +([gj(X)] 4 - terms zd thu zd of [g,(z)]4)Izd.

Lemma 3.2. Pr[.Ak] <coefficient on zk term of g.(z).
Proof. Omitted but easy.
With a bit of analysis, one can nicely upper bound the coefllicients of g,(z). It turns out that

if d is chosen sufficiently large, the coefficient on the z term of g(x) is < 1/V1. Thus we have
Theorem3.1. With high probability, a random graph on n nodes obtained by throwing in each

edge independently with probability E/n 2 , has pagenumber 0(\11).

4 An O(VW1 dn'/2 ) Upper Bound for d-regular Graphs

Let G be a d-regular graph on n vertices. Since G has E = dn/2 edges, the result of Section 2
gives an upper bound of O( /(dn) log(dn)) on the pagenumber of G. This result can be improved
to O(V'Tog3n' / 2 ) using the Lovasz Local Lemma, which we now recall.

Let (F,...,F} be a set of events. A graph H on the vertices [t) is called a dependency
graph for Fi,..., Ft if for all i, F is mutually independent of all F with (i,j} 0 H. (That is, F
is independent of any Boolean function of these F).

Lovasz Local Lemma. Let Fli,...,Ft be events with dependency graph H such that

Pr[Fj _< q all i,

deg(i) 5 6 all i

and
46q < 1.

Then Pr[ATi] > 0. *
As in Section 2, randomly assign a color in {1,..., VIT/h)} (p to be defined shortly) to each

node of G uniformly and independently, and group nodes of the same color into supernodes.
Fix k > 0. For each k-matching M, let FM be the event that A' spans some pair of supernodes.

The dependency graph H is on the collection of all k-matchings. The degree of any node in K is
bounded above by

6 = 2dk E < 2dkEk-'I(k- I)!.

All the FM, are equaly likely and

q = Pr(FMI < ('E h 2"( 1//2rEj-) 2k < pk-lfEk-1.

If we pick k so large that 46q < 1, then we can apply the Lovasz Local Lemma. We have

46q< 4.2dk Ek -
1 =k-1 8dk f dP .k

(k -1)! k I (k-I1)! k!

which is less than 1 if p = (1/2e)logd and k = logd. Thus by the Lovasz Local Lemma, the
probability that no pair of supernodes is spanned by more than k = logd independent edges

6



= PrIAFT] > 0. BY Lemmas 2.2 and 2.4, this shows at, o(V/dl 7tl/ 2) upper bound on the

pagenumber of G. We have just showi
Theorem 4.1. If G is a d-regular graph oil n itodes, then G call be embedded ill O(VWlogn71?/2)

pages.)

5 An 0(v/d1/2- 1/d) Lower Bound for d-regular Graphs

Theorem 5.1. For d > 2 and all sufficiently large n, a random d-regular graph on n nodes has
pagenumber fl(vfdn1/2 - 1/d) with high probability.

Proof Sketch. The main idea here is to show that with high probability, a random d-regular
graph on n nodes (thus E = dn/2 edges) has the following property. No matter how the nodcs are

clustered into VIE supernodes of size n/vrE, a fraction ct(n, d) of the ('s) supernode pairs have
a spanning edge. To do this, one basically counts the number of d-regular graphs that don't have
this property. Taking o(n, d) = O(n-1/d), this is a tiny fraction of d-regular graphs .

Now consider a d-regular graph G that does have the above property, and linearly order its
vertices in any fashion. Partition the linear order into i,/ consecutive blocks of size n/vT. Look at
those pairs of blocks that are spanned by at least one edge, and for each such pair remove exactly one
spanning edge. Let S be the set of removed edges. By assumption, ISI > a(n, d)('I) _ a(n, d)E/2.
Since no more than 3VrE of these edges can appear on the same page (a planar graph on t nodes
has less than 3t edges), fl(a(n, d)vT) pages will be required to embed the edges in S. Thus any
book embedding of G requires Q(o(n, d)V'Ei) pages. a
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